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Abstract: In this paper we describe the important factors affecting the
permeability of Tight Gas Sandstones reservoirs. We propose two
approaches for prediction of permeability in in-situ conditions. The
proposed approaches capture the key parameters that affect
permeability in reservoir conditions, such as, microstructure (which is
characterized by parameters such as porosity, pore throat diameter
and grain size), diagenetic processes (which is characterized by the
degree of cementation), bedding architecture (which is characterized
by primary sedimentary structure) and in-situ conditions (such as
saturation and confining pressure). We propose two empirical models
based on multivariate regression analysis and artificial neural
networks. To validate the proposed approach we have used tight gas
sandstone data from six western US basins

1. INTRODUCTION

The term “Tight Gas Reservoir” has been coined
for reservoirs of natural gas with an average

are poorly connected by very narrow capillaries
resulting in very low interconnected porosity

permeability of less than 0.1 mD and porosity
less than 10%, Law & Curtis (2001). There could
be a number of reasons for making a reservoir
tight. Basically the permeability that determines
the ease at which a fluid can flow, is a
multivariate function governed by the Darcy’s
law of fluid flow in porous media. Effective
porosity, viscosity, fluid saturation and the
capillary pressure are some of the important
parameters which control the effective
permeability of a reservoir, Campbell (2009),
Naik (2002), Misra (2008).

Figures 1 and 2 show the thin sections of
conventional and tight gas sandstones
respectively. In tight gas sandstones, the pores

and hence very low permeability. Gas flows
through these rocks generally at low rates and
special methods are necessary to produce this
gas.
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Figure 1 Thin section of a conventional
sandstone

The pore space (blue areas) can be seen to be
interconnected so gas is able to flow easily from
the rock, (Naik, 2002).

FIGURE 2 Thin section of a tight gas sandstone.

o

The pores (blue areas) are irregularly
distributed and the porosity of the rock can be
seen to be much less than the conventional
reservoir (Naik, 2002).

Reservoir quality is determined by the ability for
storage and deliverability of fluids contained in
the pores of the rocks in a reservoir.
Permeability is the key parameter that
determines the quality of a reservoir. In addition
to permeability, the reservoir quality also
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depends on parameters such as porosity,
diagenetic processes, distribution of natural
fractures, etc. Quantifying the quality of a tight
gas reservoir involves (1) understanding the
relationships between the properties such
porosity, pore throat radius, saturation,
confining pressure, etc., (2) the architecture of
the distribution of these properties, and (3)
predicting the effective gas permeability at
reservoir conditions.

Of all the properties affecting reservoir quality,
permeability is the most important and most
difficult property to determine and predict. To
quantify the reservoir quality we need to predict
the in-situ permeability. Previous studies have
shown that permeability predicted in routine air
conditions is greater than the permeability
under reservoir conditions, often by more than a
hundred-fold, because of the absence of water
saturation, and relief of confining pressure. In
tight gas sandstones, routine air permeability
values typically range from 10 to 1,000 times
greater than in-situ gas and liquid permeability
values, Miller et al. (2007).

The major contributions of this paper are, (1)
propose a core sample based approach for
prediction of in-situ permeability for tight gas
sandstone reservoirs, (2) propose a hybrid
approach that uses both wireline logs and core
sample measurements to predict in-situ
permeability, (3) propose empirical prediction
models based on multivariate regression
analysis (MVA) and artificial neural networks
(ANNs), and (4) validate the proposed
approaches with data from Mesaverde tight gas
sandstones of western US basins, KGS (2009).

Section Il describes three broad categories of
permeability prediction approaches. In section
IIl we describe the commonly used permeability
prediction models and classify them into one of
the broad categories described in section Il
Section IV provides details of our proposed
approaches for in-situ permeability prediction.
Section V describes the important parameters
that affect permeability and how the proposed
approaches capture these parameters. Section
VI provides details on the two permeability
prediction models used in our proposed
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approaches. We propose empirical models
based on multivariate regression analysis (MVR)
and artificial neural networks (ANN). Section VII
provides results of permeability prediction using
the proposed approaches.

2. PERMEABILITY PREDICTION

APPROACHES

The permeability prediction approaches can be
classified into three broad categories:

2.1. Wireline logs based approach

Wireline logs are obtained by means of
measuring equipment (logging tools) lowered on
cable (wireline) into the well. Measurements are
transmitted up the cable to a surface laboratory
or computer unit. A large number of different
logs may be run, each recording a different
property of the rocks penetrated by the well.
Wireline logs allow in situ measurements of
parameters related to porosity, lithology,
hydrocarbons, and other rock properties. These
logs provide a consistent one dimensional profile
of rock properties. However, in the wireline log
based approach the measured properties may
not be of direct interest and not uniquely related
to the properties that are of direct interest (such
as permeability, porosity, etc.). Wireline logs
allow a megascopic (that relates to the scale of
grid blocks) analysis. A number of previous
studies have proposed empirical models which
capture relationships between permeability and
variables from wireline logs, Ahmed (1991),
Coats (1974), Mohaghegh (1997).

Figure 3 shows the typical approach for
permeability prediction using wireline logs. The
approach begins with computing the volume of
shale from Gamma Ray logs. The total porosity is
determined from Neutron and Density logs. The
effective porosity is determined from total
porosity after correcting for the volume of shale.
Water saturation is determined from formation
water resistivity using Archie equation. Bulk
Volume Water (BVW) is computed from
effective porosity and water saturation Bulk
Volume Water Irreducible (BVI) is computed
using depth plots where BVV is approximately
constant. Irreducible Water Saturation (Swi) is
computed from total porosity and bulk volume
water irreducible (BVI). Finally, permeability
estimated using Timur equation Timur (1968).
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2.2. Core sample analysis based approach

Core samples obtained while drilling (using a
core-barrel), by virtue of their size and
continuous nature, permit a thorough geological
analysis over a chosen interval. Measurements
on core samples are done in routine air or
simulated in-situ conditions. Using core samples
it is possible to measure properties of direct
interest (such as permeability, porosity, etc.) and
develop prediction models using the measured
properties. However, core samples are extracted
from discrete points in the reservoirs, therefore
do not provide a continuous profile like wireline
logs. Core samples allow microscopic (that
relates to pore and grain sizes) and macroscopic
(that relates to core-plug scale) analysis. A
limited number of laboratory test data on core
samples can be correlated with geophysical log
measurements at specific depths. Data from the
wireline logs can then be used for predictions in
un-core regions. A number of previous studies
have determined empirical relationships
between permeability and other properties such
as porosity, pore throat radius, grain size, etc.,
which are measured from core samples Glover
(2006), Pittman (1992).

2.3. Hybrid approach

Hybrid approaches use both core sample and
wireline log measurements to predict in-situ
permeability.  Schlumberger (2011), has
described one such hybrid approach where the
facies identified from the wireline logs define
“containers” that are populated with multiple,
equally well-constrained core-measured
properties. In uncored wells these facies are
recognized through logs alone and their inferred
core-equivalent properties are extracted from
the associated containers.
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FIGURE 3 A typical approach for permeability prediction using wireline logs
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FIGURE 4. Proposed approaches for in-situ permeability prediction.
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We propose two approaches one based on core samples and the other which is a hybrid approach that

uses both core samples and wireline logs.
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3. COMMONLY USED PERMEABILITY

PREDICTION MODELS

We now describe some commonly used models
for permeability prediction. The Kozeny-Carman
model is based on work of Kozeny which was
later reworked by Carman. The most popular
form of the model is given by,

L ¢
28, (1-¢y

where k is permeability in m?, ¢ is porosity in
fraction and Sgr is the specific surface area per
unit bulk volume. Specific surface area is the
total area exposed within the pore space per unit
grain volume. A more general form of Kozeny-
Carman equation is,

3
(A
S

where A is an empirical constant (“the Kozeny
constant”). Since Sgr is not directly measurable,
therefore irreducible water saturation is used as
a proxy for Sgr, leading to empirical equations
such as Timur equation. Kozeny-Carman model
is used in core sample based approach.
Approximations such as Sgr = 6 / dg where dg is
the grain size have been used for spherical grains
which allows Kozeny-Carman model to be used
for permeability prediction with core sample
analysis data, Glover (2006) et al.

Timur (1968) developed an empirical model
which is given by,

0.136¢"*
k= —S2
where @ is porosity and Swi is irreducible water
saturation. The Timur model is commonly used
for permeability prediction using wireline logs as
shown in figure 3.
Coates et al. (1991) has provided an equation to
calculate permeability from NMR logs, which is
given by,

FHTy,

k=010g) (o
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where the ratio (FFI/BVI) is based on a T2 cut-off
dividing the NMR spectra into a bound fluid (BVI)
and a free fluid (FFI) region. Free Fluid Index (FFI)
is the product of hydrocarbon saturation and
porosity, FFl = (1 - Swi). Bulk Volume Water
Irreducible (BVI) is estimated as, BVI = ¢ Swi.
The ratio (FFI/BVI) serves as a proxy for specific
surface area Sgr.

A newer model called RGPZ is described by
Glover et al.(2006). This is an analytically
derived model as opposed the other models
discussed in this section. The RGPZ model is
given by,

2 (3m
k—d¢

- 2
dam

where k is permeability in m2, d is grain size, @ is
porosity, m is cementation exponent, and a is a
constant which is typically set to 8/3 for quasi-
spherical grains. Glover etal. (2006) have
described a core sample based permeability
prediction approach using the RGPZ model.

4. PROPOSED APPROACHES FOR IN-

SITU PERMEABILITY PREDICTION

Figure 4 shows the proposed approaches for in-
situ permeability prediction. We propose two
approaches, one based on core samples and the
other which is a hybrid approach that uses both
core samples and wireline logs. The proposed
approaches are generic in nature and can be
applied to different reservoirs. It is important to
note that the empirical relationships established
for one reservoir may not be transferable to
another.  Therefore  generic modelling
approaches that use core sample analysis data,
wireline log data or both, to first establish the
prediction models and then predict permeability
can provide more accurate results.

4.1. Proposed core sample based approach

In core sample (CS) based approach,
measurements on the core samples are done for
properties such as porosity (using Helium
porosimeter), pore throat diameter (using
Mercury Injection Capillary Pressure
experiment), the three indices called grain size,
sorting & texture index, degree of cementation
and primary sedimentary structure (using thin
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section image analysis and SEM analysis),
routine air and confined permeability (using
Nitrogen gas flow permeameter). The data from
these measurements is then used to develop
empirical models based on multivariate
regression analysis (CS-MVR) and artificial neural
networks  (CS-ANN) that capture the
relationships between the permeability,
porosity and other parameters that affect
permeability.

Figure 5 shows the block diagram of the
proposed core sample based approach for in-situ
permeability prediction. This is a two-step
approach in which first the routine air
permeability is predicted using parameters such
as porosity, pore throat diameter, and three
indices called the grain size, sorting & texture
index, degree of cementation and primary
sedimentary structure, which are obtained from
core sample measurements. In the second step
we incorporate in-situ conditions to predict the
permeability in reservoir conditions. The
advantage of this proposed core sample based
approach is that it is able to capture complex
relationships between permeability and other
parameters which are reservoir specific, as
opposed to empirical models such as Timur
which may not provide accurate predictions for
all reservoirs.

Moreover, a limitation of Timur and Coates
models is that they are highly sensitive to very
small changes in porosity which is magnified by
large porosity exponents. Therefore these
models show a greater spread in the predicted
values as compared to the predictions from our
proposed models. Furthermore, Timur, Coates
and RGPZ models all use a single mathematical
relationship (i.e. with the same porosity
exponent) for a large range of porosities.

However, previous studies for tight gas
sandstones have shown that separate
relationships for different classes of porosities
(low, medium and high) can provide more
accurate predictions, Bourbie et al. (1985). In our
proposed approach, indices such as grain size,
sorting & texture index and degree of
cementation capture the different classes of
porosity.
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4.2. Proposed hybrid approach

In the hybrid approach (HY) we use the core
sample measurements and wireline log data for
developing the empirical models and
permeability prediction using the developed
models as shown in figure 4.

This approach allow in-situ permeability
predictions in uncored regions. Figure 6 shows
the block diagram of the proposed hybrid
approach for in-situ permeability prediction.
This approach uses both wireline logs and core
samples. Each of the facies derived from the
wireline logs represent a “container” as in the
Schlumberger Tight Rock Analysis approach.

A number of core samples are extracted from
each container. In the proposed hybrid approach
properties measured from the core samples
such as grain size, sorting & texture index,
degree of cementation and primary sedimentary
structure, are extrapolated to the entire
container. Wireline logs provide measurements
of irreducible water saturation and in-situ
porosity. In-situ permeability is then predicted
by the proposed prediction models based on
multivariate regression analysis (HY-MVR) and
artificial neural networks (HY-ANN), which use
the core derived and wireline log derived
properties. With the hybrid approach it is
possible to provide a continuous prediction
profile at reservoir conditions.
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Figure 5. Block diagram of the proposed core sample (CS) based approach for in-situ permeability
prediction. This is a two-step approach in which first the routine air permeability is predicted using
proposed empirical models (CS-MVR, CS-ANN) and then the in-situ effects are added to predict the in-situ

permeability.
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FIGURE 6. Block diagram of the proposed hybrid approach (HY) for in-situ permeability prediction*
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*Each of the facies derived from the wireline logs represent a container. A number of core samples are
extracted from the containers. The properties measured from the core samples are extrapolated to the
entire container. In-situ permeability is predicted by the proposed prediction models (HY-MVR, HY-
ANN) which use the core derived and wireline log derived properties.

5. FACTORS AFFECTING PERMEABILITY

In this section we discuss the important factors
that affect permeability and how proposed
approaches are described in section IV capture
these parameters. Permeability depends on,

microstructure (which is characterized by
parameters such as porosity, pore throat radius
and grain size), diagenetic processes (which is
characterized by the degree of cementation),
bedding architecture (which is characterized by
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primary sedimentary structure) and in-situ
conditions (such as saturation and confining
pressure).

5.2. Effect of microstructure on permeability
Microstructure of a rock is characterized by
porosity, pore throat radius and grain size.

5.2.1. Porosity

Porosity is defined as the fraction of the total
volume of a rock that is not occupied by the solid
constituents. The total porosity, ¢T, which
consists of all the void spaces (pores, channels,
fissures, vugs) between the solid components, is
expressed as,

V=V _
¢ = v

R

where Vp = volume of all the empty spaces
(which is generally occupied by oil, gas or water),
Vs = volume of the solid materials and Vt = total
volume of the rock.

We distinguish two components in the total
porosity, @T = @CP + @EX. Closed packed
porosity, @CP, is the primary porosity which is
intergranular or intercrystalline. It depends on
the shape, size and arrangement of the solids,
and is the type of porosity encountered in clastic
rocks. Expanded porosity, @EX, is the secondary
porosity, made up of vugs caused by dissolution
of the matrix, and fissures or cracks caused by
mechanical forces, Prince et al. (1999), Serra
(1984). Closed packed porosity exists due to the
pore features that have scales less than grain
size is associated with pore/grain shape.
Whereas, expanded porosity exists due to the
pore features that have scales greater than grain
size and is associated with the interrelationship
of grains, grain packing and micro-
fractures.Interconnected porosity, ¢IC, is made
up only of those spaces which are in
communication. This may be considerably less
than the total porosity, @T. The part of the
interconnected porosity in which the diameters
of the connecting channels are large enough to
permit fluid flow is called potential porosity, @P.

A permeable rock must have connected
porosity. The permeability of a rock is a measure
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of the ease with which fluid of a certain viscosity
can flow through it, under a pressure gradient.
The absolute permeability k describes the flow
of a homogeneous fluid, having no chemical
interaction with the rock through which it is
flowing.

5.2.2. Grain Size

Grain size defines the minimum center-to-center
distance at which grains can pack together and
thus defines the fundamental spatial density of
porosity  (pore-to-pore  separation). Pore
features that exist at scales less than grain size
are associated with pore/grain shape, while
those that exist at scales greater than grain size
are associated with the interrelationship of
grains, i.e grain sorting and texture Prince et al.
(1999). The shape and size of the grains and their
degree of sorting affect the pore size and hence
the porosity and permeability.

Study of the microstructure of a rock can be
done by scanning electron microscope
photography. Analysis of the images of the
microstructure allows relating the porosity with
pore sizes and grain size.

In our proposed approach we capture the grain
size, sorting and texture in the form of an index
as shown in Table 1. Using thin section image
analysis we classify the cores samples into 10
different classes shown in Table 1.
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TABLE 1: Grain size, sorting & texture index

—
=
o
(]
>

Description

Shales

Silty shales (60-90% clay)

Siltstones or very shaly sandstones (40-65% clay and silt)

Moderately shaly sandstones (10-40% clay and silt)

Sandstones, very fine
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Sandstones, fine

Sandstones, medium

Sandstones, coarse

Sandstones, very coarse to gravely sandstone

O 0| U N | | W=D

Conglomerate, matrix or clast supported

5.2.3. Pore throat radius

Pore throat radii determine the amount of
connectivity of the pores, i.e. the interconnected
porosity, @IC, and hence the permeability. It is
possible to have a very high porosity without any
permeability at all, as in the case of pumice-
stone (where there is no interconnecting pore
throats) and clays and shales (where the pore
throats are so fine that the surface tension
forces are strong enough to prevent fluid
movement), Serra (1984). The controlling factor,
therefore, is not the porosity itself, but the radii
of the connecting channels.

The distribution of pore throat radii can be
determined using Mercury Injection
Porosimetry. Washburn equation expresses the
relationship between the pore throat, throat
radius and capillary pressure as,

B 2YcosO
g

where, r is the pore throat radius, Y is the
mercury surface tension, 0 is the contact angle
and P is the capillary pressure. Mercury Injection
Porosimetry involves injecting mercury at
increasing pressure into a sample, which has
been previously evacuated. Capillary pressure-
saturation curves are generated by recording
mercury pressures and saturations. Pore throat

Source: Cluff et al. (1994), Byrnes et al. (2008)

radii are calculated at certain mercury
saturations using the Washburn equation.

In our proposed approach we use the pore
throat diameter (d50) determined at 50%
mercury saturation.

5.3. Effect of diagenetic processes on
permeability

Diagenesis is the process by which the
underlying rock goes through changes at low
temperatures and pressures due to physical and
chemical processes. Physical processes are
compaction and stress that act on the rock and
the sub-surface fractures. These chemical
diagenetic mechanisms are cementation and
mineral bridge formation. Cementation is the
process by which carbonates and quartz based
cement is deposited in the matrix of the rock.

Figure 7 shows the effects of diagenesis in tight
gas sandstones. The pore spaces have been filled
by a special resin that makes them appear blue
and can easily be identified. Notice the fine clay
minerals (illite), grown on the pore surfaces
during diagenesis. Clay minerals are most likely
the main cause for pore throat clogging during
hydraulic fracturing treatments, Naik (2002).

In our proposed approach we use an index called
Degree of cementation to capture the diagenetic
effects. Degree of cementation is estimated
using thin section image analysis, which classifies
the images into 10 classes as shown in Table 2.
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TABLE 2: Degree of cementation

p—
=
o
a
~

Description

Totally cemented, dense, hard, unfractured

Dense, fractured

Well indurated, mod-low porosity (3-10%), unfractured
Well indurated, mod-low porosity (3-10%), fractured
Well indurated, mod-low porosity (3-10%), highly fractured
Indurated, mod-high porosity (>10%), unfractured
Indurated, mod-high porosity (>10%), fractured
Indurated, mod-high porosity (>10%), highly fractured
Poorly indurated, high-v. high porosity, soft
Unconsolidated sediment

O | | O\ | | W —| O

Source: Cluff et al. (1994), Byrnes et al. (2008)

FIGURE 7 Thin section of a tight gas sandstone showing diagenesis effects.

AE i .

Source: Naik (2002)

TABLE 3: Primary sedimentary structure

Index | Description

0 Vertical perm barriers, shale dikes, cemented vertical frac-
tures

1 Churned/bioturbated to burrow mottled (small scale)

2 Convolute, slumped, large burrow mottled bedding (large

scale)

Lenticular bedded, discontinuous sand/silt lenses

Wavy bedded, continuous sand/silt and mud layers

Flaser bedded, discontinuous mud layers

Small scale (< 4 cm) x-laminated, ripple x-lam, small scale
hummocky x-bd

Large scale (> 4 cm) trough or planar x-bedded

Planar laminated or very low angle x-beds, large scale
hummocky x-bd

9 Massive, structureless

[@ 1) JF SRS

ool

Source: Cluff et al. (1994), Byrnes et al. (2008)
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5.4. Effect of bedding architecture on
permeability

The effect of bedding architectures is captured
by anindex called primary sedimentary structure
which is shown in Table 3.

5.5. Effect of in-situ conditions on
permeability

5.5.1. Saturation

In the majority of sediments, initially
impregnated with water, gas can only penetrate
the water-filled pore-space under a driving force
superior to the capillary pressure at the gas-
water interface. In other words, in formations
possessing very fine capillaries, where capillary
forces are high, a very high driving pressure
would be required to cause the gas to displace
the water. Under ordinary conditions, such
formations would be impermeable to gas. Thus
the concept of permeability is a relative one, i.e.
the same rock being permeable to water, is
impermeable to gas at a certain pressure, but
permeable to both water and gas if one of them
is submitted to a force greater than the capillary
forces acting.

Darcy’s law assumes a single fluid. However, a
reservoir can quite well contain two or even
three fluids (water, oil and gas). In such cases, we
must consider diphasic flow and relative
permeability. The flows of the individual fluids
interfere and their effective permeabilities are
less than absolute permeability k defined in
Darcy’s equation.

The effective permeability describes the passage
of a fluid through a rock, in the presence of other
pore fluids. It depends not only on the rock itself,
but on the percentages of fluids present in the
pores, i.e., their saturations.

The relative permeabilities (krw, krg) are simply
the ratios of the effective permeabilities (kw,kg)
to the absolute (singe-fluid) permeability, k.

They vary between 0 and 1, and can also be
expressed as percentages : krw = kw /k for
water, krg = kg/k for gas. As the water
saturation increases, the relative permeability of
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gas, krg, decreases, while the relative
permeability of water, krw, increases.

In our proposed approach we use a modified
Corey equation, Byrnes et al. (1979), Corey
(1954), to predict krg in low-permeability
sandstones,

(1-S

wc,g)

8 (1-S, -8

_(1- (S, =S,cq) % (1_((Sw —ch,g))q)
wc,g)

where Sw is fractional water saturation, Sgc is
the fractional critical gas saturation, Swc,g is the
fractional critical water saturation relevant to
the gas phase, and p and g are exponents
expressing pore size distribution influence.
Swc,g and Sgc are estimated using, Byrnes
(2003),

S\, =0.16+0.053xlogk, . (k, > 0.001mD)

S =0,(k, <0.001mD)

we,g
S, =0.15-0.05xlog k,
p=17,q=2

where kik is Klinkenberg absolute-gas
permeability measured on a dry sample.

FIGURE 8. Example of thin section of a tight gas
sandstone with Grain Size, Sorting & Texture
30 3 &J*' ,; ,;i - v‘t-’ . ; '? 4

index = 5, Degree of Cementation = 2 and
Primary Sedimentary Structure = 8. This image
was obtained from a core sample extracted from
a depth of 11460.6 ft from “Inexco Wasp A-1"
well of Green River basin, KGS (2009).
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FIGURE 9 Example of thin section of a tight gas

index = 4, Degree of Cementation = 2 and
Primary Sedimentary Structure = 9. This image
was obtained from a core sample extracted from
a depth of 11584 ft from “Inexco Wasp A-1" well
of Green River basin, KGS (2009).

5.5.2. Pressure

Due to the effect of in-situ pressure, the pore
throat radii decrease which cause a reduction in
porosity. There have been extensive studies on
the effect of confining pressure on porosity and
pore volume compressibility in sandstones,
Newman (1973), Somerton et al. (1978).
Klinkenberg (1941), characterized the gas
slippage, which results from greater gas
movement due to decreased molecule-molecule
interactions at lower pressure as,

4CL b
kgas = klzquid (l + T) = kliquzd (l + ;)

where kgas is gas permeability at pore pressure,
kliquid is liquid permeability and is equal to the
Klinkenberg permeability kk, c is proportionality
constant, L is mean free path of gas molecule at
pore pressure, r = pore radius, b is
proportionality constant (=f(c, L, r)), and P = pore
pressure (atm). Values for b can be estimated
from the relation presented by Jones
et al. (1980),

b=0.867k, "
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Routine permeabilities of tight gas sandstones
are shown to be greater than under reservoir
conditions, often by more than a hundred-fold,
because of the great relief of stress, absence of
connate water, and increased gas slippage.

Permeability decreases with increasing confining
stress/pressure. The difference between
permeabilities measured at routine conditions
(kair) and those measured at confining stress
increases  progressively  with  decreasing
permeability and increasing confining stress
Byrnes et al. (2008), Byrnes (1997).

Jones et al.(1980) modeled the stress
dependence of permeability and presented an
expression to estimate in-situ permeability from
routine permeability as,

logk, =k /(1= SLog(P, /1000))’

In our proposed approach we characterize the
pressure sensitivity of cores using the
permeability measured in routine air and
confined conditions. From the established
relationship between pressure and permeability
we can then predict permeability at any given
value of pressure. The pressure sensitivity index
is given by,

_ logk,, —logk,,
log P1—-log P2

where kP1 and kP2 are permeabilities measured
at net confining pressure of P1 and P2
respectively.

The relationship between permeability and
confining pressure is then expressed as,

logk =y LogP+C

6. PROPOSED PERMEABILITY

PREDICTION MODELS

As described in section IV, our proposed
approaches use data from either the core
sample analysis (core sample based approach) or
both core samples analysis and wireline logs
(hybrid approach) to develop empirical models
that capture the relationships between the
permeability, porosity and other parameters
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that affect permeability. In this section we logk, ... =Ap,..+BS, +Ci.+Di.+Eii+F

it
describe the the proposed empirical models. W”

6.1. Multivariate regression analysis based
model

Multivariate regression analysis (MVR) is an
approach that allows to determine a formula
that captures the relationship between a
dependent variable and multiple independent
variables.

There is no general mathematical relationship
expressing permeability in terms of porosity,
pore throat radius and grain size, that can be
applied to all cases. There are several published
relationships between permeability, porosity
and pore throat radius which have been
established using empirical studies. Pittman
(1992), has determined empirical relationships
between permeability, porosity and pore throat
radius, using the data from Mercury Injection
Porosimetry for sandstone samples. The
equation that provides the best estimates of
permeability, as pointed by Pittman is,

logk =-1.221+1.415log¢+1.512logr,,

where, k is the air permeability, ¢ is porosity and
r25 is the pore throat radius derived for a
mercury saturation of 25%.

For the core sample based approach, we
propose an MVR based model (CS-MVR) that
establishes empirical relationships of the form,

logk, = A¢+ Blogd,, +Ci, + Di. +Ei, + F

where kair is routine air permeability, ¢ is
porosity, d50 pore throat diameter determined
from MICP experiment at 50% mercury
saturation, iG is grain size, sorting and texture
index shown in Table I, iC is degree of
cementation shown in Table I, iS is primary
sedimentary structure shown in Table Ill.

For the hybrid approach, we propose an MVR
based model (HY-MVR) that establishes
empirical relationships of the form,

where kinsitu is in-situ permeability, @incitu is
in-situ porosity obtained from wireline logs, Swi
is irreducible water saturation obtained from
wireline logs, iG, iC and iS are the three indices
which are obtained from analysis of core
samples in each container which are then
extrapolated to the uncored intervals in the
containers.

The multiple regression solves for unknown
coefficients A, B, C, D, E and F by minimizing the
sum of the squares of the deviations of the data
from the model (least-squares fit).

6.2. Artificial neural networks based
model

The artificial neural network (ANN) based model
uses a a two-layer feedforward network, with a
sigmoid transfer function in the hidden layer and
a linear transfer function in the output layer as
shown in figure 12. The hidden layer in the
network has 10 neurons. These layers of neurons
with nonlinear transfer functions allow the
network to learn nonlinear relationships
between input and output vectors. Thus the
artificial neural network model is able to capture
complex relationships  between  various
properties affecting permeability which cannot
be captured using simpler algebraic equations.

Rezaee et al.(2006) used an ANN based model
to capture relationships between permeability,
porosity and pore throat size of carbonate rocks.
We propose two different forms of ANN based
model. The proposed ANN based model in the
core sample based approach (CS-ANN) uses core
measured porosity, pore throat diameter, grain
size, sorting & texture index (iG), degree of
cementation (iC) and primary sedimentary
structure (iS) as the input vector. Whereas the
proposed ANN based model in the hybrid
approach (HY-ANN) uses in-situ porosity and
irreducible water saturation which are obtained
from wireline logs and the three indices (iG, iC
and iS) which are obtained from core samples in
each container and then extrapolated to the
uncored intervals in the containers.

For training the ANN we divide the data into
three subsets. The first subset which is the
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training set (70 % of data) is used for computing
the gradient and updating the network weights
and biases. The second subset is the validation
set (15 % of data). The error on the validation set
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is monitored during the training process. The
third subset (15 % of data) is used for testing the
ANN.

FIGURE 10 Screenshot of permeability prediction tool that uses the core sample (CS) based approach -
routine air permeability prediction.
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FIGURE 11 Screenshot of permeability prediction tool that uses the core sample (CS) based approach - in-
situ permeability prediction.
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FIGURE 12 Proposed artificial neural network based model that uses two-layer feedforward network,
with a sigmoid transfer function in the hidden layer (with 10 neurons) and a linear transfer function
in the output layer.

Hidden Layer

»l

Input

7. RESULTS

In this section we present results of the
proposed core sample based and hybrid
approaches for in-situ permeability prediction.

7.1. Core sample based approach

For the core sample based approach we propose
two prediction models CS-MVR and CS-ANN as
described in section VI. We compare the
proposed models with an analytically derived
model called the RGPZ model, Glover et al.
(2006), which is also based on core sample
approach. Figures 10 and 11 shows screenshots
of the in-situ permeability prediction tool that
uses the proposed core sample based approach.

7.1.1. Routine air permeability prediction

Figure 13 shows a comparison of the predicted
routine air permeability with the measured
routine air permeability using the proposed CS-
MVR model. Data from 117 core samples from
12 different wells was used for this comparison.

Figure 14 shows the comparison of predicted
and measured routine air permeability for the
proposed ANN based model. Figure 15 shows
the comparison for the of predicted and
measured routine air permeability for RGPZ
model. The fit line in figures 13, 14 and 15 shows
the least squares fit to the data. For a perfect fit,
the fit line should fall along the 45 degree line
(Y=X), where the measured and predicted values
match.

Comparing figures 13, 14 and 15 we observe that
the CS-ANN based model gives the best results

Output Layer

(correlation coefficient, R = 0.92), followed by
CS-MVR model (correlation coefficient, R = 0.89)
and RGPZ model (correlation coefficient, R =
0.82). The CS-ANN model performs better than
the CS-MVR model because the neural network
is able learn nonlinear relationships between
input and output vectors and hence capture the
complex relationships which cannot be
expressed as simple algebraic expressions.
Moreover both the proposed models (CS-MVR
and CS-ANN) perform better than the RGPZ
model because, the proposed models
incorporate the effects of microstructure and
diagenesis and also distinguish between
different classes of porosity using the three
indices described in section IV.

7.1.2. In-situ permeability prediction

As discussed in section IV, we adopt a two-step
approach. In first step we predict the routine air
permeability and in the second step we add the
in-situ effects to predict permeability in
reservoir conditions.

Figure 16 shows the comparison of predicted in-
situ permeability (at a confining stress of 4000
psi and 50% water saturation) with the routine
air permeability using CS-MVR model. From the
fit line and the 45 degree line (Y=X) it is observed
that the predicted in-situ permeability is less
than the routine air permeability, because of
factors such as presence of water saturation and
confining stress in reservoir conditions.

As seen in figure 11 we can change the values of
in-situ parameters such as confining pressure
and water saturation to observe the effects of
the reservoir conditions on permeability. Figures
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17 and 18 show the comparisons of predicted in-
situ and routine air permeability for CS-ANN and
RGPZ models respectively.

Figure 19 shows an example of how we
incorporate the effect of confining pressure onto
the predicted routine air permeability. As
described in section IV, we characterize the
pressure sensitivity of the core using the
permeability measured in routine air and
confined conditions. From the established
relationship between pressure and permeability
we can then predict permeability at any given
value of pressure. From figure 19 we observe
that permeability decreases with an increase in
pressure which is due to factors such as
reduction in pore volume. Figure 20 shows how
we incorporate the water saturation effects. As
described in section IV, we use the Corey
equation to calculate the relative gas
permeability for a given value of absolute gas
permeability and water saturation. From figure
20 we observe that relative gas permeability
decreases significantly as the water saturation
becomes greater than 50%.

7.2. Hybrid approach

For the hybrid approach we propose two
prediction models HY-MVR and HY-ANN as
described in section VI. We compare the
proposed models with the Timur model which is
a wireline log based model. To validate the
proposed hybrid approach we used wireline log
and core sample analysis data from two different
wells of Mesaverde tight gas sandstone
reservoirs. As described in section IV the hybrid
approach uses the concept of containers which
are identified from logs. A number of core
samples are extracted from each container. The
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properties measured from the core samples are
extrapolated to the entire container. In-situ
permeability is predicted by the proposed
prediction models (HY-MVR and HY-ANN) which
use the core derived and wireline log derived
properties. Figure 21 shows the depth plot of
permeability for “AmHunter Old Road 1” well of
the Green River basin using the wireline log and
core sample data from KGS (2009).

Figure 22 shows the depth plot of permeability
for “Barrett Last Dance 43C-3-792" well of the
Piceance basin using the wireline log and core
sample data from KGS (2009). Both figures 21
and 22 show a comparison of the core measured
permeability (in simulated in-situ conditions),
log derived Timur permeability, and predicted
in-situ permeabilities using proposed HY-MVR
and HY-ANN models. From both figures it is
observed that the HY-ANN model gives the best
match to the core permeability followed by HY-
MVR and Timur models. This is because the HY-
ANN model is able to learn complex patterns of
permeability distribution in the well.

The HY-MVR model, on the other hand, provides
a best estimate of the average, therefore, the
distribution of the predicted values is narrower
than the original data. The Timur model gives a
wide variation in the predicted values because it
uses fewer parameters than the other models
and relies heavily on in-situ porosity. Due to a
large porosity exponent in the Timur model,
small variations in porosity lead to large
variations in permeability. From figures 21 and
22 we observe that the hybrid approach
provides a continuous prediction profile at
reservoir conditions.
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FIGURE 13 Routine air permeability prediction
using CS-MVR model.
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The plot shows a comparison of measured and
predicted routine air permeability obtained using
MVR based model. The fit-line shows the least
squares fit to the data. For a perfect fit, the fit
line should fall along the 45 degree line (Y=X),
where the measured and predicted values
match.

FIGURE 14 Routine air permeability prediction

using CS-ANN model.
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The plot shows a comparison of measured and
predicted routine air permeability obtained
using ANN based model. The fit-line shows the
least squares fit to the data. For a perfect fit,
the fit line should fall along the 45 degree line
(Y=X), where the measured and predicted values
match.
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FIGURE 15. Routine air permeability prediction

using RGPZ model
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The plot shows a comparison of measured and
predicted routine air permeability obtained using
RGPZ model. The fit-line shows the least squares
fit to the data. For a perfect fit, the fit line should
fall along the 45 degree line (Y=X), where the
measured and predicted values match.

FIGURE 16. In-situ permeability prediction using
CS-MVR model
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The plot shows a comparison of routine air and
predicted in-situ permeability (at a confining
stress of 4000 psi and 50% water saturation)
obtained using MVR based model. The fit-line
shows the least squares fit to the data. The fit
line falls below the 45 degree line (Y=X) which
shows that the predicted in-situ values of
permeability are smaller than the routine air
values.



Journal

FIGURE 17. In-situ permeability prediction using
CS-ANN model
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The plot shows a comparison of routine air and
predicted in-situ permeability (at a confining
stress of 4000 psi and 50% water saturation)
obtained using ANN based model. The fit-line
shows the least squares fit to the data. The fit
line falls below the 45 degree line (Y=X) which
shows that the predicted in-situ values of
permeability are smaller than the routine air
values.

FIGURE 18. In-situ permeability prediction using

RGPZ model
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The plot shows a comparison of routine air and
predicted in-situ permeability (at a confining
stress of 4000 psi and 50\% water saturation)
obtained using RGPZ model. The fit-line shows
the least squares fit to the data. The fit line falls
below the 45 degree line (Y=X) which shows that
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the predicted in-situ values of permeability are
smaller than the routine air values.

FIGURE 19. Example of the effect of pressure on
gas permeability
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The plot shows that the permeability decreases
with an increase in pressure which is due to
factors such as reduction in pore volume. The
pressure-permeability relationship was obtained
by characterizing the pressure sensitivity of the
core using the permeability measured in routine
air (800 psi net confining stress) and confined
conditions (4000 psi net confining stress).

FIGURE 20. Example of the effect of water
saturation on relative gas permeability
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The plot shows that the relative gas
permeability decreases significantly as the
water saturation becomes greater than 50%.
The relative gas permeability and water
saturation relationship was obtained using the
Corey equation.
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FIGURE 21. Depth plot of permeability for
“AmHunter Old Road 1" well of the Green River
basin using the wireline log and core sample data
from KGS (2009).
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The plot shows a comparison of the core
measured permeability (in simulated in-situ
conditions), log derived Timur permeability, and
predicted in-situ permeabilities using proposed
HY-MVR and HY-ANN models. The HY-ANN
model gives the best match to the core
permeability followed by HY-MVR and Timur
models.
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FIGURE 22. Depth plot of permeability for
“Barrett Last Dance 43C-3-792" well of the
Piceance basin using the wireline log and core
sample data from KGS (2009).
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The plot shows a comparison of the core
measured permeability (in simulated in-situ
conditions), log derived Timur permeability, and
predicted in-situ permeabilities using proposed
HY-MVR and HY-ANN models. The HY-ANN based
model gives the best match to the core
permeability followed by HY-MVR and Timur
models
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TABLE 4: Comparison of models

Model Approach Standard Deviation | Standard Error | Correlation Coefficient
RGPZ Core sample | 21.9855 2.0326 0.8220
CS-MVR | Core sample 6.7557 0.6246 0.8940
CS-ANN | Core sample 11.8778 1.0981 0.9218
Timur Wireline Log | 0.1349 0.0199 0.5758
HY-MVR | Hybrid 0.0022 0.0003 0.7588
HY-ANN | Hybrid 0.0095 0.0014 0.8886

8. CONCLUSION

Prediction of permeability in reservoir
conditions is the key to quantify the reservoir
quality. Permeability depends on
microstructure, diagenesis effects and in-situ
conditions in the reservoirs. In this paper we
described the key properties affecting
permeability and proposed two in-situ
permeability prediction approaches. Through
empirical modeling techniques such as
multivariate regression analysis and artificial
neural networks we developed prediction
models. The proposed models were validated
with the data from tight gas sandstone
reservoirs of western US basins. Results showed
that the proposed models are able to capture
the key properties affecting permeability in
reservoir conditions and provide accurate
predictions.
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